Viral alteration of cellular translational machinery increases defective ribosomal products.
نویسندگان
چکیده
Here we show that cells expressing genes inserted into Semliki Forest virus (SFV) vectors generate a large fraction of defective ribosomal products (DRiPs) due to frequent initiation on downstream Met residues. In monopolizing the host cell translational machinery, SFV reduces levels of translation eukaryotic initiation factor 4E (eIF4E), diminishes phosphorylation of ribosome subunit S6, and phosphorylates translation initiation factor eIF2alpha. We show that the last event is required for SFV mistranslation of inserted genes. Downstream initiation is suppressed by fusing inserted genes with the open reading frame encoding the SFV capsid, demonstrating that one function of the capsid element is to enable ribosomes to initiate translation in the proper location. These results show that in modifying translation, viral vectors can unpredictably increase the generation of truncated polypeptides and thereby the DRiP fraction of inserted gene products, which can potentially affect their yield, therapeutic efficacy, and immunogenicity.
منابع مشابه
Protecting the proteome: Eukaryotic cotranslational quality control pathways
The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide ...
متن کاملOne for all? A viral protein supplants the mRNA cap-binding complex
Modulation of the host cell’s translational machinery is a crucial part of viral infection strategies. Well-characterised mechanisms that aid viruses in manipulating translational activity include, for example, internal ribosomal entry sites, which allow viral RNA translation in the absence of some or many of the canonical host translation factors. New research shows that the nucleocapsid prote...
متن کاملTight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products.
There is mounting evidence that MHC class I peptide ligands are predominantly generated from defective ribosomal products and other classes of polypeptides degraded rapidly (t1/2 < 10 min) following their synthesis. The most direct evidence supporting this conclusion is the rapid inhibition of peptide ligand generation following cycloheximide-mediated inhibition of protein synthesis. In this st...
متن کاملVirus-Mediated Compartmentalization of the Host Translational Machinery
UNLABELLED Viruses require the host translational apparatus to synthesize viral proteins. Host stress response mechanisms that suppress translation, therefore, represent a significant obstacle that viruses must overcome. Here, we report a strategy whereby the mammalian orthoreoviruses compartmentalize the translational machinery within virus-induced inclusions known as viral factories (VF). VF ...
متن کاملA new plant protein interacts with eIF3 and 60S to enhance virus-activated translation re-initiation.
The plant viral re-initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re-initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor-re-initiation supporting protein (RISP)-that enhances TAV function in re-initiation. RISP interacts physically with TAV in vitro a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 81 13 شماره
صفحات -
تاریخ انتشار 2007